## FastTrack - MA109

## Evaluating Expressions and Properties of Real Numbers

Katherine Paullin, Ph.D.
Lecturer, Department of Mathematics
University of Kentucky
katherine.paullin@uky.edu

Sunday, August 14, 2016

## Outline

(1) Some Review
(2) Evaluating Expressions
(3) Properties of Real Numbers

4 Practice

## Attendance Question

Do you have a laptop? Please check the appropriate column on the class list that is being passed around. If you are not on the list, add your name at the bottom and check the appropriate box.

## Clicker Question

Do you have a REEF account?
A) YES
B) no

## Section 1

## Some Review

## Language, Notation, and Numbers of Mathematics

Natural Numbers $\mathbb{N}=\{1,2,3,4,5,6, \ldots\}$ Whole Numbers $\mathbb{W}=\{0,1,2,3,4,5, \ldots\}$
Integers $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Rational Numbers $\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z} ; q \neq 0\right\}$
Irrational Numbers $\mathbb{H}=\{h \mid h \notin \mathbb{Q}\}$
Real Numbers $\mathbb{R}=\{\mathbb{Q} \cup \mathbb{H}\}$

Examples: In what sets do the following numbers belong?
(1) 7
(2) $\pi$

## Language, Notation, and Numbers of Mathematics

Natural Numbers $\mathbb{N}=\{1,2,3,4,5,6, \ldots\}$
Whole Numbers $\mathbb{W}=\{0,1,2,3,4,5, \ldots\}$
Integers $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Rational Numbers $\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z} ; q \neq 0\right\}$
Irrational Numbers $\mathbb{H}=\{h \mid h \notin \mathbb{Q}\}$
Real Numbers $\mathbb{R}=\{\mathbb{Q} \cup \mathbb{H}\}$

Examples: In what sets do the following numbers belong?
(1) 7
$\mathbb{N}, \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
(2) $\pi \quad \mathbb{H}, \mathbb{R}$

## Absolute Value

## Definition

The absolute value of $n$, denoted $|n|$, is the distance of $n$ from 0 on the number line.

Examples: Compute the following.
(1) $|5|$
(2) $|-3|$
(3) $-|-4|$

## Absolute Value

## Definition

The absolute value of $n$, denoted $|n|$, is the distance of $n$ from 0 on the number line.

Examples: Compute the following.
(1) $|5|=5$
(2) $|-3|=3$
(3) $-|-4|=-4$

## Exponents

$$
3^{4}=3 \cdot 3 \cdot 3 \cdot 3=81
$$

3 is called the base and 4 is called the exponent.

Examples: Compute the following.
(1) $2^{3}$
(2) $(-1)^{5}$
(3) $-3^{2}$

## Exponents

$$
3^{4}=3 \cdot 3 \cdot 3 \cdot 3=81
$$

3 is called the base and 4 is called the exponent.

Examples: Compute the following.
(1) $2^{3}=2 \cdot 2 \cdot 2=8$
(2) $(-1)^{5}=-1 \cdot-1 \cdot-1 \cdot-1 \cdot-1=-1$
(3) $-3^{2}=-(3 \cdot 3)=-9$

## Section 2

## Evaluating Expressions

## Order of Operations

# PEMDAS <br> Please Excuse My Dear Aunt Sally 

Parenthesis and Exponents<br>Multiplication and Division<br>Addition and Subtraction

## Evaluating Expressions

Examples: Evaluate the following expressions using the Order of Operations.
(1) $5+2 \cdot 3$
(2) $8+36 \div 4\left(12-3^{2}\right)$

## Evaluating Expressions

Examples: Evaluate the following expressions using the Order of Operations.
(1) $5+2 \cdot 3$
$=5+6$
$=11$
(2) $8+36 \div 4\left(12-3^{2}\right)$
$=8+36 \div 4(12-9)$
$=8+36 \div 4(3)$
$=8+9(3)$
$=8+27$
$=35$

## Evaluating Expressions

## Evaluating a Mathematical Expression

(1) Replace each variable with open parentheses ().
(2) Substitute the given values for each variable.
(3) Simplify using the order of operations.

Example: Evaluate the expression $x^{3}-2 x^{2}+5$ for $x=-3$.

## Evaluating Expressions

## Evaluating a Mathematical Expression

(1) Replace each variable with open parentheses ().
(2) Substitute the given values for each variable.
(3) Simplify using the order of operations.

Example: Evaluate the expression $x^{3}-2 x^{2}+5$ for $x=-3$. $(-3)^{3}-2(-3)^{2}+5$
$-27-2(9)+5$
$-27-18+5$
-40

## Section 3

## Properties of Real Numbers

## Commutativity

## The Commutative Properties

Given that $a$ and $b$ represent real numbers:

$$
\begin{aligned}
a+b & =b+a \\
a \cdot b & =b \cdot a
\end{aligned}
$$

Terms can be added/multiplied in any order without changing the sum/product.

## Associativity

## The Associative Properties

Given that $a, b$, and $c$ represent real numbers:

$$
\begin{aligned}
(a+b)+c & =a+(b+c) \\
(a \cdot b) \cdot c & =a \cdot(b \cdot c)
\end{aligned}
$$

Terms can be regrouped.

## Identities

The Additive and Multiplicative Identities
Given that $x$ is a real number:

$$
\begin{gathered}
x+0=x \\
1 \cdot x=x
\end{gathered}
$$

Zero is the identity for addition.
One is the identity for multiplication.

## Inverses

The Additive and Multiplicative Inverses
Given that $p, q$, and $x$ represent real numbers $(p, q \neq 0)$ :

$$
\begin{gathered}
x+(-x)=0 \\
\frac{p}{q} \cdot \frac{q}{p}=1
\end{gathered}
$$

$x$ and $-x$ are additive inverses.
$\frac{p}{q}$ and $\frac{q}{p}$ are multiplicative inverses.

## Distributive Property

The Distributive Property of Multiplication over Addition
Given that $a, b$, and $c$ represent real numbers :

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& a b+a c=a(b+c)
\end{aligned}
$$

## Simplifying Algebraic Expressions

## Like Terms

$3 x^{2} \quad \frac{-1}{7} x^{2}$

## Non-Like Terms

$5 x^{3} \quad 5 x^{2}$
To simplify expressions, we will combine like terms using the Properties of Real Numbers.

## Simplifying Algebraic Expressions

## To Simplify an Expression

(1) Eliminate parentheses by applying the distributive property.
(2) Use the commutative and associative properties to group like terms.
(3) Use the distributive property to combine like terms.

Example: Simplify the expression completely: $7\left(2 p^{2}+1\right)-\left(p^{2}+3\right)$.

## Simplifying Algebraic Expressions

## To Simplify an Expression

(1) Eliminate parentheses by applying the distributive property.
(2) Use the commutative and associative properties to group like terms.
(3) Use the distributive property to combine like terms.

Example: Simplify the expression completely: $7\left(2 p^{2}+1\right)-\left(p^{2}+3\right)$.

$$
\begin{aligned}
7\left(2 p^{2}+1\right)-\left(p^{2}+3\right) & =14 p^{2}+7-1 p^{2}-3 \\
& =\left(14 p^{2}-1 p^{2}\right)+(7-3) \\
& =(14-1) p^{2}+4 \\
& =13 p^{2}+4
\end{aligned}
$$

## Section 4

## Practice

True or False?
(1) $\mathbb{N} \subset \mathbb{W}$
(2) $\mathbb{Q} \subset \mathbb{Z}$

Evaluate.
(1) $\left|\frac{1}{2}\right|$
(2) $-|-4|$

Evaluate using the order of operations.
(1) $12-10 \div 2 \times 5+(-3)^{2}$
(2) $\frac{5(-6)-3^{2}}{9-\sqrt{64}}$

## REEF Question

Evaluate using the order of operations.
(1) $12-10 \div 2 \times 5+(-3)^{2}$

## Solutions

## True or False?

(1) $\mathbb{N} \subset \mathbb{W} \quad$ True
(2) $\mathbb{Q} \subset \mathbb{Z} \quad$ False, not all rational numbers are integers.

## Evaluate.

| (1) $\left\|\frac{1}{2}\right\|$ | $\frac{1}{2}$ |  |
| :--- | :--- | :--- |
| (2) $-\|-4\|^{2}$ | -4 |  |

Evaluate using the order of operations.
(1) $12-10 \div 2 \times 5+(-3)^{2} \quad-4$
(2) $\frac{5(-6)-3^{2}}{9-\sqrt{64}}$
$-39$

## Evaluate for $x=2$ and $y=-3$

(1) $4 x-2 y$
(2) $6 x y^{2}$

Simply the expression.
(1) $3\left(a^{2}+3 a\right)-\left(5 a^{2}+7 a\right)$
(2) $\frac{3}{5}(5 n-4)+\frac{5}{8}(n+16)$

## Solutions

## Evaluate for $x=2$ and $y=-3$ <br> (1) $4 x-2 y 14$ <br> (2) $6 x y^{2} \quad 108$

Simply the expression.
(1) $3\left(a^{2}+3 a\right)-\left(5 a^{2}+7 a\right) \quad-2 a^{2}+2 a$
(2) $\frac{3}{5}(5 n-4)+\frac{5}{8}(n+16)$
$\frac{29}{8} n+\frac{38}{5}$

